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Abstrucr-Fault discovery in the complex 
systems consist of model based reasoning, fault 
tree analysis, rule based inference methods, and 
other approaches. Model based reasoning builds 
mdeis for the systems either by inathematic 
formulations or by experiment model. Fault Tree 
Analysis shows the possible causes of a system 
malfunction by enumerating the suspect 
components and their respective failure modes 
that may have induced the problem. The rule 
based inference build the model based on the 
expert knowledge. Those models and methods 
have one thing in common; they have presumed 
some prior-conditions. Complex systems often 
use fault trees to analyze the faults. Fault 
diagnosis, when error occurs, is performed by 
engineers and analysts performing extensive 
examination of all data gathered during the 
mission. International Space Station (ISS) 
control center operates on the data feedback from 
the system and decisions are made based on 
threshold values by using fault trees. Since tiose 
decision-making tasks are safety critical and 
must be done promptly, the engineers who 
manually analyze the data are facing time 
challenge. To automate this process, this paper 
present an approach that uses decision trees to 
discover fault from data in real-time and capture 
the contents of fault trees as the initial state of 
the trees. 

1. INTRODUCTION 

Decision trees (also called classification trees) 
are the binary tcees built from data samples and 
can classify the objects into different classes. In 
our case, the decision trees can classify different 
fault events or normal events. Given a set of data 
samples, decision trees can be built and trained, 
and then by running the new data through the 
trees, classification and prediction can be made. 

In this way, diagnostic knowledge for fault 
detection and isolation can be represented as 
diagnostic rules; we call this tree the diagnostic 
decision tree(DDT). By showing the fault path 
in decision trees, we also can point out the root 
cause when a fault occurs. Since all the 
procedures and algorithms are available to build 
decision trees, the trees built are cost effective 
and time effective. Because the diagnostic 
decision trees are based on available data and 
previous knowledge of subsystem logic, the 
DDT can also be trained to predict faults and 
detect unknown faults. Based on this, the needs 
for on-board real time diagnostics can readily be 
met. Diagnostic Decision Trees are built based 
on the fault trees as static trees that serve as the 
fundamental diagnostic trees, and the dynamic 
DDTs are built over time from vehicle telemetry 
data. The dynamic DDT will add the 
functionalities of prediction, and will be able to 
detect unknown faults. Crew or maintenance 
engineers can use the decision tree system 
without having previous knowledge or 
experience about the diagnosed system. To our 
knowledge, this is the first paper to propose a 
solution to build diagnostics decision trees from 
fault trees, which convert the reliability analysis 
models to diagnostic models. We show through 
mapping and ISS examples that the approach is 
feasible and effective. We also present future 
work and development. 

Detect faults in a complex system requires 
complex diagnostic tools. Fault tree is one of 
those tools to be used for analyzing and 
diagnostic fault. The fault tree concept was 
introduced by Bell Telephone Laboratories in 
1962 for the U.S. Air Force for use with the 
Minuteman system [SI. It was later adopted and 
extensively applied by the Boeing Company and 
is one of the most widely used methods in 
system reliability analysis for a long time [4]. It 
is a deductive procedure for determining the 
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various combinations of hardware and software 
failures and human errors that could result in the 
occurrence of specified undesired events 
(referred to as top events) at the system level. As 
part of the analysis, the minimal cut sets of a 
fault tree can be determined [3], and then fault 
trees can be built. Individual fault trees can be 
visualized and drawn. Fault trees are usually 
individually built for each part of the system for 
each top event. It is hard to have generic 
software to traverse fault trees. On the other 
hand, the decision trees are matured data 
structures and it is very easy to be' manipulated 
in a software program. Using decision trees to 
represent fault trees will increase the operability 
and decrease response time for system 
diagnostics, and furthermore, will make it easier 
for users to visuaiize the root cause of the fault 
and path from which the fault came. The high 
availability of many different tree algorithm 
implementations in the computer science field 
makes using decision tree to manage the fault 
trees one of best approaches. In this paper, we 
present a method to convert existing fault trees to 
decision trees. More general ways of 
constructing decision trees are presented. The 
method is easy to program and run on a 
computer since the decision tree algorithms have 
many available implementations [5]. This 
method also provides a good tool for researchers 
on simulation and prediction tasks. By using this 
method, one can analyze data samples from the 
past and categorized them into different classes; 
abnormal, normal, and fault events in such a way 
that future faults can be predicted from the past. 
This could be a data mining components with 
run time updating processes. Such an artificial 
intelligent application is presented in the paper as 
a form of framework architecture. 

2. DETECT FAULTS FROM DATA 

Using decision trees, we can detect fault from 
data by monitoring the data values and compare 
to the fault patterns. When we do not have the 
fault patterns at beginning of the system, we 
need to set up initial trees with results of fault 
analysis of static system. Usually we can have 
initial fault trees. Then we can migrate the fault 
trees to decision trees. We also can build 
decision trees from events and telemetry data 
during run time when real data is coming in. The 
decision trees converted from fault trees could be 
used as diagnostic tools. When fault happened, 

we can recognize the fault by running telemetry 
data through the trees and finding out where the 
data stops. Also, the type of fault can be 
categorized and its path can be determined by 
such trees. Other applications are also possible 
by utilizing decision trees. Once we know that 
the decision tree is very well suited for data 
mining tasks, we can apply our trees to a data 
mining application targeting at recognizing fault 
patterns and do early fault detection and 
prediction. Data mining is the process of 
analyzing data from different perspectives and 
summarizing it into useful information. It allows 
users to analyze data from many different 
dimensions or angles, categorize it, and 
summarize the relationships identified. In our 
case, it is the process of finding fault patterns. A 
design modei, ais0 we can call it a framework 
model, is presented in Figure 1. In the figure, we 
can see how the hybrid decision trees, in this 
case it a kind of fault decision tree, fit into the 
knowledge discovery part of the data mining 
process [7]. Initially, the trees are built for 
known fault. For example, the initial trees 
converted from fault trees. Then we have on 
going decision trees building processes on real 
time data when the system is running. While we 
know the fault trees could not be developed run 
time and could not be used in such application, 
the decision trees are so easy to be fit into such 
an application. We can build such a tree that 
records fault patterns each time a fault event 
occurs. Especially, we record the fault trends 
patterns so we can use such trees to recognize a 
fault in its early stages. 
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Figure 1 Decision trees in fault 
discovery application 

3. CONVERSION METHOD 

There are some other attempts to represent fault 
trees by other forms; one of them is building 
diagnostic maps from fault trees [2]. Decision 
trees are trees usually built from data. Let’s look 
at a fault tree and see how can we map it to the 
decision tree. Take a sample fault tree in the 
form of following: 

over voltage 

A 

Figure 2 Over Voltage Event Fault Tree 

We have 6 inputs to the tree. The inputs remain 
the same for the decision tree. The corresponding 
decision tree should have the same functionality 
in terms of samples inputs and fault triggers. In 
the other words, the same inputs to the fault tree, 
or to the decision tree will have the same result. 
The corresponding tree can be built as in Figure 
3. If by applying the telemetry data one can 
propagate all the way to terminal node 6, we 
know that the system is at an over voltage fault. 
The decision tree not only provides the final 
result if the system is at fault status, it can also 
provides the interim status by looking at where 
the sample data end up. To ease the decision tree 
generation and notation, we give the signals 
short names as follows: 

Consecutive readings = ct; Voltage A over trip 
point 129 = Ua; Validity UaA = UdA; Reconfig 
deactive = Config; Voltage B = Ub; Validate Ub 
= UdB. 

Ub<=lO 

UdB= 
0 

Figure 3 Decision Tree for Over Voltage 

To show a more common case that includes an 
OR gate in the fault tree, the other example is 
shown below: 

Fram count 

Fail to change m 4 seco 
GNC enabled 

3 seconds 

Figure 4 GNC Fail Event Fault Tree 

Similarly, we represent the signals in short 
notations. Frame count = Fc; Fail to change in 4 
seconds = Fc4; GNC enabled = GNCe; SM loss 
conn = Smloss; 3 second = SM3. In this case, 
more balanced data inputs will end up with more 
evenly distributed decision trees. In the same 
way as we showed earlier, the corresponding 
decision tree is presented as follows: 
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Figure 5 Decision Tree for GNC Fail 

We had demonstrated that fault trees can be 
mapped to decision trees with examples of the 
over voltage and GNC fail fault trees. The 
convenience use of decision tree use is that the 
available decision tree software programs can 
easily pin point a root cause of an event ( 
including fault event) by recording the edges in 
the path of the tree when giving reports and 
evaluation of the system status. For more general 
purposes and for ease of illustration, we can 
abstract the information into a map and construct 
a decision tree from this map. The map basically 
represents the different events, including fault 
events, in the n dimension space. When we deal 
with decision trees, we call the events classes. 
The class could be fault, nominal, or warning etc. 
This demonstration shows that the decision tree 
not only can be derived from the fault tree but 
also can be constructed from data samples, 
which is very useful in real time fault detection 
and prediction. 

1 ,  I I I I I 

I I I 1.1 I 
S 

S 

I I I I I  
I I I I 

0 Si s* s3 s, s, 

Figure 6 Class distributions 

To map to the decision tree, we use an example 
to explain it. We assume faults in the two 
dimension space for simplification of 
visualization. Multiple dimensions will follow 
the same rules. In Figure 5, we give an example 
of the fault scenarios, the triangles represent 
normal, called Class 1 and squares represent 
faults, called Class 2. We will use cumulative 
distribution function ( c d !  for tree construction. 
The cd'is the probability that the variable takes a 
value less than or equal to x. That is 

F ( z )  = P'[X 5 4 = N (1) 

This can be expressed mathematically for 
continuous distribution: 

For a discrete distribution, the cdfcan be 
expressed as 

2 

When we construct a decision tree, we have a 
root, then we have two branches, further, each of 
those branches can, have a maximum of two 
branches, until no further branches can be 
constructed and we reach the bottom of the tree 
and we are done. Those procedures could be said 
in another way; we are splitting the data until it 
couldn't be split any more. So what we need is 
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information on where to split, and when do we 
stop splitting. With the method of accumulated 
distribution function, we construct the trees 
using the following steps. First, calculate the cdf 
for each class. Second, compare the result for 
each class at all the points. Third, the largest 
value will be picked and the maximum value 
of x will be the split point.. Repeat first to third 
step until no more points to split remain. In the 
example, we calculate the cdffor each class as a 
function of each attribute (see Figure 5), and then 
pick the split point where the difference of the 
two cdfvalues is maximum. 

Figure 7 Calculate split point by using 
C d f 4  1) 

We repeatedly split until all samples in a node 
are of the same class. In Figure 6, the horizontal 
axis is the possible split points s, 1 < i <= 5 
corresponding to the x-axis in Figure 6, and the 
vertical axis is the value of the cdffor each class. 
In Figure 6 fi is the cdf value for class 1 

(cylinders) and f, is the cdf value for class 2 
(cubes). 
In Figue 6, the vertical axis is the possible split 
points. S,  5 < i <= 10 corresponding to the y- 
axis in Figure 6, and the horizontal axis is the 
value of the cdffor each class. In Figure 6 f, is 
the cdfvalue for class 1 (cylinders) and f, is the 
cdf value for class 2 (cubes). The purpose is to 
find the point where the distance between fi  

and f, is the maximum. To calculate the cdf, 

we used the estimated function n, / N ,  . The 
total number of samples in class 1 is 6, and in 
class 2 is 4. N ,  = 6 and N ,  = 4. As shown in 

Figure 5 at split point SI , we have t h e 5  value 

of 1/6, and f, value of 0. At split point s, we 

have the f, value of 216, and af2 value of 1/4. 

At split point s, we have the f, value no 

change, still 216 or 113, and a f, value of 214 or 

1/2. At split point S4 we have the f, value of 

112 and a f, value of 314. At split point s, we 

have the f, value of 516 and a f, value of no 
change, 3/4. 
Similarly in Figure 8 at split s, the value of f, 
is 1/6 and f, is 0. At split point s, we 

s6 s7L 0 Cdf 

Figure 8 Calculate Split Point Using cdf(2) 

have the f, value of 316, and a f i  value of 0. 

With the same calculations, at split point s, we 

have the f ,  value of 416 and a fi value of 0. 

Again, at split point s, we have the f, value of 

516 and a f, value of 1/4. At split point SI,, 

we have the f, value of 1 and a f, value of 
214. 

From Figures 7 and 8, we can see that the split Sa 
has the maximum distance (416) between f, and 

f, among all others. Therefore, we pick the 

first split point as s, . After we split the set on 

s, , we have two subsets, one of the subsets has 
only class 1 in it, and so we don’t need to do the 
further split on this subset. But on the other 
subset, we will repeat the same calculations on 
the remaining samples to find the further split 
points. The procedures to calculate the cdf and 
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select the maximum distance between f ,  and 

f, are the same as above. The constructed tree is 
shown in Figure 9. 

A- 
Figure 9 Final Decision Tree 

When the real time data comes in, we let them 
propagate through the decision tree that we 
constructed. The faults are detected and 
classified when the data samples fall into a fault 
class at the terminal node. To illustrate how the 
fault happened, we can show the fault mode by 
tracking the path that the data went through. 
Visualization of the path with a distinctive color 
or shape will show the user the clear cause of the 
fault. 

This method not only can apply to the 
conversion of the fault trees to decision trees, it 
can also construct decision trees from data 
samples at run time during operation of ISS over 
time. By simply selecting a set of data samples 
from time to time, we can build decision trees 
dynamically. In later time, the built decision 
trees can be used to compare the new data to the 
old data and to predict future faults. The best use 
of such trees is to build trees by applying 
grouped fault scenarios and then applying real 
time data to the tree to compare the pattern to 
know fault patterns, faults can be detected when 
a pattern is matched. 

4. CONCLUSION 

of faults is easier and that tree manipulation 
becomes more programmatic via available 
decision tree programs. The visualization of 
decision trees for diagnostics shows a format that 
is straightforward and easy to understand. For 
ISS real time fault diagnostics, the status of the 
systems could be shown by running the signals 
through the trees and watching where it stops. 
The other advantage to using decision trees is 
that the trees can learn the fault patterns and 
predict future faults from the historic data. The 
learning is done not only on the static data sets 
but also can be runtime; through accumulating 
the real time data sets, the decision trees can gain 
and store faults patterns in the trees and 
recognize them when they reoccur. The decision 
tree plays the role in howledge discovery while 
the fault tree could not. 

5. FUTURE DEVELOPMENT 

This paper presented the method to migrate the 
fault trees to decision trees, which lays a good 
foundation for using data mining technique in 
advanced diagnostic systems. The next step will 
naturally fall to a project to implement data 
mining software for fault detection, prediction, 
and analysis. Such software will use the decision 
trees as an engine inside of the diagnostic system 
application. This engine will be able to gain 
knowledge of fault patterns then recognize them 
when they reoccur. 

We started from ISS fault tree examples to 
migrate to decision trees by presenting a method 
for converting fault trees to decision trees. The 
method shows that the visualization of root cause 
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